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Abstract

There is a huge amount of video image data in the action recognition domain, and it is
unreasonable to use expensive manual annotation. Traditional semi-supervised learning
applies graph embedding and label propagation to mine local neighborhood relationships
between labeled and unlabeled data. However, graph-based modeling methods have lim-
ited effectiveness for unstructured action videos. Recently, Graph Convolutional Networks
(GCNs) have been used to exploit local neighborhood relationships of samples (action
videos). However, existing GCNs methods struggle to extract discriminative high-level
features from fixed graph, and suffer from excessive computational complexity when
dealing with large-scale data. To address these issues, we propose a new GCN-based
semisupervised method with adaptive feature correlation, which enhances local neighbor-
hood by computing its correlation weights and learns global topology from labeled and
unlabeled samples to obtain the optimal graph structures, effectively extracting high-level
features. Furthermore, owing to the complexity caused by the inevitable redundant compu-
tations of GCNs, we apply linear transformations to the features of neighbor graph nodes,
then aggregate adjacent nodes’ features for capturing the local neighborhood information.
Thus, we mitigate this excess complexity by removing nonlinearity and collapsing weight
matrices between consecutive layers, thereby addressing the issue of computational com-
plexity . This linear model is simpler than traditional GCN models and offers superior
generalization, robustness, and efficiency. The proposed approach achieves comparable
performance on UCF101 using only 0.15 X N labeled training data. On HMDB51 and



Something-Something V2, our method improves the recognition accuracy by +1.7% and
+2% respectively, using only 0.20 X N labeled training data.

Keywords: Graph convolutional networks, Adaptive correlation learning, Semisupervised learning,
Global topology optimization

1 Introduction

Action recognition is becoming increasingly important in various application fields, includ-
ing video surveillance, action analysis in athletic events, and human-computer interaction. It
has attracted significant research interest in computer vision [1-3]. These research methods
respectively address fabric defect detection in practical industrial manufacturing, as well as
the issues of helmet detection in road surveillance and activating discriminative cues in deep
feature maps for image retrieval. In particular, some methods improve image dehazing by
integrating partial Siamese frameworks with multiscale dual encoding and decoding infor-
mation fusion, as well as multi-level feature interaction and non-local information enhanced
channel attention mechanisms [4, 5]. Fully supervised learning requires substantial labeled
data to execute recognition tasks effectively. However, unlike unlabeled data, labeled data
are scarce in the real world. Thus, we focus on how to leverage unlabeled data for exploring
feature correlations.

Action recognition based on Convolutional Neural Networks (CNN) has achieved sig-
nificant results in recent years [6—12]. CNN-based action recognition involves end-to-end
model training, extracting various types of features (RGB frames or optical flows) from
videos using diverse network architectures [13, 14]. Most CNN-based methods utilize local
filters with deep learning features and common parameters to process unstructured data. In
contrast, Graph Convolutional Networks can operate on structured data. Nevertheless, They
represent an effective variant of CNN for graph-structured data, achieving new node repre-
sentations through feature aggregation from adjacent nodes [15]. However, GCNs primarily
draw inspiration from recent deep learning approaches, potentially inheriting unnecessary
complexity and redundant computations. To address these issues, a general solution involves
removing nonlinear functions from GCNs, thereby reducing computational complexity [16].
In this study, videos are regarded as a specific case of unstructured data, and adaptive GCN is
constructed for enhancing feature modeling.

Although action recognition technology has exhibited significant advancements [17-19],
several obstacles remain. Large datasets such as Sports-1M and Kinetics-400 require expen-
sive manual annotation. A fully supervised model cannot achieve high performance with
insufficient training samples. In contrast, semisupervised learning techniques can use labeled
and unlabeled data. During the model training phase, such techniques typically only employ
a small quantity of labeled data and a substantial amount of unlabeled data. However, most
semisupervised learning algorithms cannot outperform fully supervised learning techniques.
Considering the properties of GCNs, we believe that graph-convoluted features extracted by
exploring feature correlations can improve semisupervised recognition performance.



On the other hand, during the manual video sample labeling, video samples with stronger
correlations are more likely to have the same behavioral category. Nevertheless, most exist-
ing deep learning methods simply consider the impacts between different frames in a single
video, but how to explicitly define several videos for correlation purposes remains unclear.
Therefore, we focus on the feature correlations and global topology among different videos
for high-level feature representations.

However, the above-mentioned methods are constrained to fixed graphs, which limits
their application scope. Hence, designing a learnable model for general graph structures
is important. We present a novel GCN-based Semisupervised method with Adaptive Cor-
relation (GSAC) to overcome the abovementioned issues. GSAC analyzes the correlations
among videos and employs feature aggregation to improve feature representations. We apply
a weighted strategy that only considers the influences among correlated samples. After sev-
eral training rounds, our proposed method can learn optimal graph structures effectively. The
contributions of this study are summarized as follows:

* This study is the first RGB-based semisupervised action recognition work to investigate
adaptive feature correlation and GCNs. Both local neighborhood information and global
topology structure are considered by modeling a potential feature subspace.

* Semisupervised node classification with correlated regularization is employed. We leverage
the aggregated features with both labeled and unlabeled data to avoid incorrect adjacency,
especially without unreliable pseudo-labels during traditional training process.

* The joint optimization algorithm is analyzed to demonstrate its superiority over
other semisupervised approaches. Extensive experiments conducted on three bench-
marks—UCF101, HMDBS51, and Something-Something V2—validate the comparable
performance of the proposed method to others, specifically achieving improvements of
+1.7% and +2% in accuracy on HMDBS51 and Something-Something V2, respectively.
These results indicate that our approach enhances action recognition performance and
significantly reduces the dependence on labeled data.

2 Related Work

2.1 SemiSupervised Learning

Semisupervised learning has been extensively used in numerous fields [20-23]. Fully super-
vised learning is expensive, as a significant volume of training data must be identified.
Unlabeled samples can be used to learn data correlations in semisupervised learning, and
thus, it is advantageous for vision tasks and in terms of human labor costs. In recent years,
many semisupervised learning techniques have been presented for various vision tasks. Luo
et al. [24] demonstrated an adaptive semisupervised feature selection technique for identi-
fying video semantic contents. Xu et al. [25] proposed a semisupervised action recognition
approach based on discriminant manifold learning, which concurrently modeled the com-
pactness and separability. Si et al. [26] introduced a Adversarial Self-Supervised Learning
(ASSL), a novel framework that tightly couples self-supervised learning and the semi-
supervised scheme via neighbor relation exploration and adversarial learning. Khan et al. [27]
developed a unique semisupervised inception neural network ensemble-based architecture to
impute missing labels. Bi et al. [28] constructed a novel human activity recognition paradigm,
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Fig. 1: Comparison with GCN [15], SGC [16] and GSAC. Top row: The GCN sequentially
transforms the feature vectors across K layers and then applies a linear classifier to the final
representation. Middle row: SGC streamlines the entire process, simplifying it to a single
feature propagation step followed by straightforward logistic regression. Bottom row: GSAC
obtains better correlations between graph nodes through adaptive correlation learning with
simple feature propagation.

that integrated active learning and semisupervised learning into one framework, by actively
selecting the most insightful examples for annotation. In response to the above-mentioned
studies, we combine semisupervised learning and GCNs to recognize human actions.

2.2 Adaptive Correlation Learning

Zhang et al. [29] proposed an adaptation method that uses knowledge information derived
from images to improve video action classification. Velickovi¢ et al. [30] created a graph
attention network (GAT) by stacking layers; where the nodes can attend to the features of
their neighborhoods. The GAT operates on graph-structured data and addresses the drawbacks
of the previously developed methods based on graph convolutions or their approximations,
whereby the features of adjacent nodes are combined to produce an embedding representation
of the core node. Jiang et al. [31] suggested the novel graph learning-convolutional network
(GLCN) framework to learn the ideal graph topology adaptively. Han et al. [32] introduced
the Point2Node end-to-end graph model to represent a specific point cloud, which can exam-
ine the correlations among all network nodes at various levels to aggregate the newly learned



properties. Ma et al. [33] introduced a new hashing method called Correlation Filtering Hash-
ing (CFH), which improves fine-grained image retrieval by integrating semantic information
with visual features. Ying et al. [34] developed an autoencoder-based adaptive feature fusion
approach, utilized softmax normalization for additional learning to extract the features from
the convolutional and completely connected layers, then sending them to an autoencoder.

2.3 Graph Convolutional Networks

Previous works have stated that GCNs can analyze a wide range of graph-structured data.
Hamilton et al. [35] presented a node embedding method that randomly selects and combines
features from the vicinity of nodes. Kipf et al. [15] introduced a hierarchical propagation strat-
egy for neural network models and constructed an effective semisupervised GCN based on
graph-structured data. Thakkar et al. [36] developed a portioned GCN, divided a bone graph
into four subgraphs with shared joints, and employed this network on the recognition model.
Zeng et al. [37] proposed leveraging proposal-proposal interactions with GCNs to localize
temporal actions. Manessi et al. [38] designed two cutting-edge network that combine GCNs
and long short-term memory networks for learning both long-term dependencies and graph
structure information. Sofianos et al. [39] exhibited a space-time-separable GCN (STS-GCN)
for posture forecasting. The STS-GCN is the first method to use a GCN for describing human
stance dynamics. Qiu et al. [40] learned an effective multistream-based skeleton topology and
a semantically guided adaptive GCN for action recognition. Gan et al. [41] illustrated a multi-
graph fusion technique to create a superior graph and derived a low-dimensional space from
the original high-dimensional data for their GCN model.

3 Proposed Approach

This section describes the formulation of the proposed approach. We first introduce the local
neighborhood from adjacent edges between connected graph nodes, then develop a feature
aggregation method to enhance feature representation of different videos. At the same time, an
adaptive correlation learning module is proposed to calculate the correlation weights among
samples. Last but not the least, a single-layer graph convolution is constructed by feature
propagation, which can derive the optimal global graph structure, thus obtain a graph con-
volutional model for action recognition. Fig. 1 depicts the differences of GCN, SGC and
GSAC.

3.1 Formulation

The original features of the given video are represented as X = (x1, T2, T3, ..., Tn). €
RV*F where x; € RF*! denotes the feature of the i-th video, N is the number of videos,
and F is the feature dimensionality of the video. An undirected graph is represented as G =
(V, &), where V and £ are the sets of nodes and edges in the graph, respectively. A € RV*¥
represents the adjacency matrix of the graph G = (V, ), where N = |V| is the number of
graph nodes. The degree matrix D = (d1, da, ..., d,,) is a diagonal matrix. In the following
description, we consider each video sample to be a graph node and define the edges of the
graph by employing the relationships among different videos. Fig. 2 depicts the step-by-step
GSAC training process.
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Fig. 2: The training process of the proposed semisupervised learning method involves several
steps. It starts with a feature extractor and then constructs a K-nearest neighbor graph. Next,
an adaptive correlation module is employed to optimize the relationships between different
nodes, achieving global topology optimization. A single-layer graph convolution aggregates
the features between the nodes (for instance, the features of xg are composed of the fea-
tures from 7, zo, T3, and xg¢ itself). Finally, the updated node high-level features are passed
through a softmax layer to obtain the prediction results.

In an undirected graph G = (V, £), if the relationships between each central node and
other nodes remain unknown, it can be assumed that there may exist edges between each
central node and the others. As the correlation between nodes in most graphs tends to be
relatively low, some edge definitions might lead to inappropriate relationships for the central
nodes, rendering it ineffective in representing the relationships among nodes properly. In this
research, we construct a K-nearest neighbor graph by employing video features [42], which
can be formulated as follows:

(1

where N (x;) denotes the set of the K-nearest neighbors to «; in the original feature space.
Furthermore, e;; € £, and when e;; = 1, nodes v; and v; have connected edges; otherwise,
no connected edges are present.

We construct the adjacent correlation of each node to capture local neighborhood infor-
mation of all samples for better feature embeddings. For any node v; € V in the graph
G = (V,&), the neighborhood features x, of central node v; can be aggregated with a
weighted scalar w;,., which can be formulated as follows:

o 1, ¢; € Ng(x;) or &; € Ng(x;);
771 0, otherwise,



hi = > wix,, hi € R, (2)
reV,
where V), represents the adjacent set of node v;, x,. represents the feature of adjacent node v,..
An adjacent edge between nodes v; and v, indicates they are related. Therefore, the
weighted scalar w;,. can be defined as the correlation between v; and v,.:

Wiy = Sim(mh m'f‘); (3)
where w;,. can quantify the similarity between different nodes embedding. Once w;,- has

been determined, those adjacent nodes v, capturing correlative characteristics for central
nodes v; are beneficial to the feature aggregation.

3.2 Adaptive Correlation Learning

In traditional Graph Convolutional Networks, most static adjacency matrices are unchanged
and typically suitable for structured data. However, unstructured video data exhibits changing
adjacency relationships between sample points. Therefore, we propose an adaptive correlation
learning module to calculate the correlation weights among samples. A specific value for w;,
is derived using a learnable module that parameterizes sim(x;, x.). Consequently, equation
(3) is reformulated as

T, O,
[lzill2lzr ||2 ™
where z € R'*F represents a weighted vector and ® represents the Hadamard product.
As the dimension of the original feature is relatively high, we transfer the input features
to a lower-dimensional space, as follows:

“4)

wir = 2(

z; = Wu,, ®)

where W ¢ RF'*F (F' < F) represents a learnable linear transformation matrix. This
enables the dimension reduction. Thus, equation (4) becomes

T, © Ty

ir = 2(ReLU(—7F——-—)),
wir = 2RLU(E T,

(6)

where 2 € R and ReLU(*)=max(0, ) represents a rectified linear unit activation
function that increases feature sparsity and enhances feature-fitting ability.

The adjacent correlation weight w;, between nodes v; and v, can be calculated by
equation (6). If w;- > 0, it is inferred that nodes v; and v, are related; otherwise, they
are considered unrelated. When using equation (2) for feature aggregation, in order to mit-
igate the influence of nodes in V; that are not related to node v;, the outcomes of equation
(6) that less than 0 will be set to 0. In other words, if the adjacent correlation weight w;,
calculated by equation (6) is less than 0O, then the features of corresponding nodes v, will
not be utilized in the feature aggregation process. Consequently, this ensures those central
nodes v; only aggregate the features of related nodes, thereby obtaining more effective feature
representation.



Let V" denote a subset of set V;, where each node in V} is correlated with the central
node v;. Furthermore, w; denotes the weighted vector that can be obtained by performing
correlation calculations among the central node v; and the nodes in V}, with each element
in w,; obtained by computing w;,, v, € V;. For a better comparison of the correlations
among different nodes in V;* and the central node v;, the nonlinear softmax function is used
to normalize w;, and a new weighted vector a; is obtained as follows:

a; = softmax(w;). @)
As previously mentioned, the final adaptive correlation weight can be formulated as
exp(wi,)

> exp(wij)

jevy

LT eVr, @®)

A =

where a;,- represents an element in a;. As mentioned by Nie et al. [43], if nodes v; and v,
have a smaller distance between them ||&; — &||3, a larger correlation weight a;,- should be
assigned. Therefore, when equation (8) is used to compute the adaptive correlation weight a;;-,
the optimal correlation weight can be obtained by minimizing the following loss function:

Lr= ) (& — al5air +val,), ©
i,reVY
where the second term represents a regularization term and 7 represents a regularization
hyperparameter. If the regularization term is not included, a trivial solution is obtained; the
nearest node of central node v; is assigned a correlation weight to 1. In contrast, the other
nodes are assigned a correlation weight of 0. Therefore, the second term in equation (9) is
significant.

3.3 Global Topology Optimization

According to the above-mentioned analysis, the adaptive correlation weight a;. can be
incorporated into equation (2), which can be rewritten as follows:

hi= Y apx,, h; € R"* (10)
reV;

We introduce a learnable shared linear module W € RF*¥ then obtain a new
formulation of the node high-level features to improve the feature representation:

hi = hTW, h; € R™F (11)
By combining equations (10) and (11), we obtain

hi= Y azz]W. (12)
reVy



Let a;- be the element in the i-th row and r-th column of the adjacency matrix A in
an undirected graph G = (V,&). H = (AT, hL, hY, ..., hT)T € RV*F that is, each
row of H denotes a video’s feature representation. The original features of all videos can be
converted to equation (13), and the output features H of the first layer in GCNs becomes:

H=A,XW", (13)

Since original features X only perform feature aggregation in the first layer of GCNs, H
denotes the input/output aggregated feature in subsequent layers of GCNs. Given a nonlinear
activation function o(-), H obtains the input feature HY) = o(H) = o(A; XW M) for
the second layer of the model. Based on previous work with GCNs [15], the proposed model
is composed of a two-layer GCNs, and the output of each layer is activated by a nonlinear

activation function:
H® = O'(AQﬁ(l)W(2))

= o(Ayr (A XWH )W ?),

A general graph convolutional model can be obtained by stacking equation (13) in
multiple layers:

(14)

H® = g(Apo(H*DYyw k), (15)

where Ay, is the adjacency matrix of the k-th layer, which the adaptive correlation learning
module can obtain, H*~1 is the input feature matrix of the k-th layer, H® s the output
feature matrix of the k-th layer, HO = Xx , and W (k) is the learnable weight matrix of the
k-th layer.

However, according to GCN simplifying assumption [16], the nonlinearity between GCN
layers is not critical. In this study, we hypothesize the main benefit arises from the fea-
tures aggregation of local adjacent nodes, and remove the nonlinear transition functions
between each layers, thus the resulting model is linear:

H® = A, A XWO _ wk), (16)

The weighted parameters can be reformulated into a separate matrix to simplify the
notation: W = WM W@ W) Thus, equation (16) can be transformed into

H® = A, A XW. (17)

Unlike two-layer GCNs in a graph (e.g. a citation network) of nodes classification (e.g.
documents) [15], in this study, we achieve our best results with either one-layer or two-layer
model. After performing a single-layer graph convolution operation, GSAC could learn
the high-level features of samples efficiently. Thus, we obtain the probability distribution
matrix Y, derive the optimal graph structures and weight matrix after several training rounds.
Finally, GSAC can extract more representative high-level features by fusing the optimal graph
structures and achieve recognition via a softmax classifier. Our single-layer GCN output can
be simplified as follows:

HY = A, XW. (18)



Algorithm 1 Training details of GSAC.
Input:
Training data X € RV*F
Labeled data Y; € R1XM
Hyperparameters «, pg, 8 and ~y
Output:
Optimal z;, Wi, and w

1. Construct a K-nearest neighbor graph

2. while not converges do
(1)

3 Compute &, using (5)

4 Compute wfi ) using (6)

5: Compute agi) using (8)

6: Compute adjacency matrix A; using agi) > Adaptive Correlation Learning
7: Compute H® using (18). > Global Topology Optimization
8: Compute loss using (21) and update the weights

9. end while

10: return 21, Wi, and W)

The feature H(), derived from the graph convolutional model, serves as the input to the
fully connected layer. Subsequently, the output from this layer undergoes normalization via
the nonlinear softmax layer, resulting in prediction for videos classification:

y; = argmax(p;c), (19)

{ pi = softmax(FC(hEl))),
where F'C represents the fully connected layer operation, hz(-l) is the vector of the i-th row of
H®  and p;, is the c-th element of p;, which represents the probability value that the video
sample ¢ belongs to the c-th category.

We follow the steps below to reduce the cross-entropy loss induced by the labeled data in
semi-supervised action recognition tasks:

N, C
L2==3"> yiclogpic, (20)
i=1 c=1
where N; represents the number of labeled data, C' denotes the number of categories, y;. is
the c-th element of the one-hot representation of the ground truth for video sample ¢, and p;.
is the probability that video sample ¢ belongs to the c-th category.
The overall loss function of our method is a combination of equations (9) and (20), which
can be expressed as follows:

L =Ly~ BLy, (21)
As discussed in the Temporal Pyramid Network [7], a balancing coefficient 8 ranging
from 0.005 to 0.5 is applied to the output of £;. £ is the adaptive correlation loss in the first
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Table 1: Ablation study of k-layer graph convolution on three datasets.

Method

HMDB51 0.50 x N labeled

UCF101 0.50 x N labeled

Something-Something V2 0.50 x N labeled

GSAC-nonlinear (k = 1)
GSAC-nonlinear (k = 2)
GSAC-nonlinear (k = 3)
GSAC-linear (k = 1)
GSAC-linear (k = 2)
GSAC-linear (k = 3)

0.5813
0.5801
0.5791

0.6059
0.6034
0.5992

0.8992
0.8958
0.8941
0.9189
0.9203
0.9105

0.6051
0.6029
0.6049
0.5636
0.5689
0.5642

Table 2: Comparison on HMDB51 dataset (average accuracy repeated by 10 times) with respect to
0.05 x N,0.10 x N, 0.15 x N, 0.20 x N,0.25 x N, and 0.50 x N labeled training data.

Method 0.05 x N labeled|0.10 x N labeled|0.15 x N labeled|0.20 x N labeled|0.25 x N labeled|0.50 x IV labeled
SVM 0.1095 0.2222 0.4163 0.4688 0.5144 0.5510
MEFCU[43] 0.2536 0.3269 0.3921 0.4279 0.4597 0.5467
OGE-SFS[24] 0.1367 0.2318 0.4301 0.4740 0.5213 0.5561
SDMM]25] 0.2740 0.3514 0.4073 0.4502 0.4758 0.5556
GCN[15] 0.3571 0.4473 0.4955 0.5239 0.5346 0.5945
SGC[16] 0.3446 0.4262 0.4921 0.5039 0.5312 0.6034
GAT([30] 0.3482 0.4473 0.5002 0.5164 0.5367 0.5948
SiamMAST([45] 0.3593 0.4523 0.4973 0.5279 0.5319 0.5901
PointDMIG[46] 0.3604 0.4421 0.4829 0.5311 0.5375 0.5847
GSAC-nonlinear(k = 1) 0.3105 0.4031 0.4575 0.5056 0.5359 0.5813
GSAC-linear(k = 1) 0.3647 0.4366 0.5020 0.5405 0.5425 0.6059

Table 3: Comparison on Something-Something V2 dataset (average accuracy repeated by 10 times)
with respect to 0.05 x N, 0.10 x N, 0.15 x N, 0.20 x N, 0.25 x N, and 0.50 x N labeled training data.

Method 0.05 x N labeled|0.10 x N labeled|0.15 x N labeled|0.20 x N labeled|0.25 x N labeled|0.50 x N labeled
SVM 0.2531 0.3186 0.4013 0.4851 0.5182 0.5280
MFCU[43] 0.3520 0.4379 0.5055 0.5406 0.5583 0.5959
OGE-SFS[24] 0.2606 0.3317 0.4102 0.4887 0.5190 0.5299
SDMM][25] 0.3384 0.4150 0.4757 0.5007 0.5249 0.5735
GCN[15] 0.4094 0.5105 0.5421 0.5484 0.5633 0.5861
SGC[16] 0.4002 0.5148 0.5419 0.5557 0.5646 0.5865
GAT([30] 0.4003 0.5077 0.5439 0.5590 0.5647 0.5922
SiamMAST([45] 0.4089 0.5231 0.5421 0.5521 0.5647 0.5948
PointDMIG[46] 0.4018 0.5218 0.5479 0.5563 0.5712 0.6003
GSAC-nonlinear(k = 1) 0.4035 0.5058 0.5332 0.5702 0.5862 0.6051
GSAC-linear(k = 1) 0.4121 0.5074 0.5376 0.5349 0.5508 0.5636

layer. Our algorithm utilizes several parameters, including weighted vector z;, the transfor-
mation matrix WW; of adaptive correlation learning module, and the learnable weight matrix
W (D of first layer in graph convolution module. Algorithm 1 describes the training procedure
of our method in detail.

3.4 Experimental Setup

To evaluate the effectiveness of our approach in video action recognition, we implement
several methods to compare with our proposed algorithm: a linear support vector machine
(SVM), MFCU [44], OGE-SFS [24], SDMM [25], GCN [15], SGC [16], GAT [30],
SiamMAST [45] and PointDMIG [46]. The linear SVM is a fully supervised learning algo-
rithm, whereas MFCU, OGE-SFS, SDMM, GCN, SGC and GAT are semisupervised learning

algorithms.
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Table 4: Comparison on UCF101 dataset from the THUMOS Challenge (average accuracy repeated by
10 times) with respect to 0.05 x N, 0.10 x N, 0.15 x N, 0.20 x N, 0.25 x N, and 0.50 x N labeled
training data.

Method 0.05 x N labeled|0.10 x N labeled|0.15 x N labeled |0.20 x N labeled|0.25 x N labeled|0.50 x N labeled
SVM 0.2179 0.3801 0.6921 0.7945 0.8178 0.8801
MEFCU[43] 0.4481 0.6091 0.6812 0.7521 0.7969 0.8573
OGE-SFS[24] 0.2521 0.3943 0.6021 0.7289 0.8121 0.8759
SDMM]25] 0.4410 0.5802 0.6639 0.7219 0.7692 0.8531
GCN[15] 0.6521 0.7809 0.8452 0.8694 0.8891 0.9073
SGC[16] 0.6219 7638 0.8421 0.8621 0.8729 0.9102
GAT([30] 0.6281 0.7801 0.8203 0.8731 0.8845 0.9017
SiamMAST[45] 0.6573 0.7765 0.8421 0.8812 0.8943 0.9125
PointDMIG[46] 0.6439 0.7843 0.8568 0.8729 0.8979 0.9141
GSAC-nonlinear(k = 1) 0.5921 0.7451 0.8339 0.8598 0.8721 0.8992
GSAC-linear(k = 1) 0.6437 0.7829 0.8503 0.8837 0.9010 0.9189

Table 5: Average run times repeated by 10 times (in seconds).

Method HMDB51 0.50 x N labeled| UCF101 0.50 x NN labeled | Something-Something V2 0.50 x N labeled
GCN[15] 16.21s 33.87s 146.21s

SGC[16] 8.34s 15.46s 60.42s

GATI[30] 13.23s 25.21s 111.29
GSAC-nonlinear(k = 1) 45.23s 178.92s 721.41s
GSAC-nonlinear(k = 2) 97.35s 399.76s 1650.23s

GSAC-linear(k = 1) 3.99s 10.83s 46.46s

GSAC-linear(k = 2) 6.21s 14.54s 63.81s

Due to the limited memory resources, we only use the first split of the training and
testing sets. During the training phase, 30 videos, including labeled and unlabeled sam-
ples, are randomly selected from each category on three datasets. We denote N as the total
number of labeled and unlabeled samples in the training set (N=1530, 3030, and 5220 for
HMDBS51 [47], UCF101 [48], and Something-Something V2 [49], respectively). We ran-
domly choose n (n=5/10/15/20/25/50) percent of the training set, resulting in 0.05 x N,
0.10 x N, 0.15 x N, 0.20 x N, 0.25 x N and 0.50 x N randomly labeled training videos.
In contrast, the numbers of remaining unlabeled training samples are 0.95 x N, 0.90 x N,
0.85 x N,0.80 x N, 0.75 x N, and 0.50 x N, respectively. During the testing phase, we use
all test samples in the original dataset, particularly the validation set of Something-Something
V2. We repeat the experiment 10 times for a fair comparison since the labeled data in the
training set are randomly selected.

To optimize the model, the initial learning rate « is set to 0.002, and dropout with pg = 0.6
is applied to the input of each layer in the network. when calculating the loss function, we set
B= 0.2 and y= 103. We follow the settings from the original papers for MFCU, OGE-SFS,
and SDMM parameters.

Our experimental hardware platform consists of Silver 4110 CPU, 128GB memory, and
NVIDIA GeForce GTX 1080Ti. The software environment includes Ubuntu 18.04.2, Python
3.7 and PyTorch 1.11.0.

3.5 Results Analysis

In Tablel, we perform an ablation study on k-layer graph convolution on three datasets. The
experimental results show that the model performs best with & = 1 or £ = 2, and there is
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little improvement in accuracy with k£ > 3. This is consistent with findings from most GCN
literature (e.g.,GCN [15], which states: “Best results are obtained with a 2- or 3-layer model”).
In subsequent experiments, we compare results for ¥ = 1 and £ = 2 with other models.
Therefore, the use of the notation 1. .. k is a standard expression for GCNs (as demonstrated
in SGC [16]). The semisupervised nonlinear GCN is taken as the baselines. We present the
average accuracy on three datasets in Table 2 to Table 4, where GSAC-linear represents the
obtained model after removing the nonlinear activation function.

* Performance on Action Recognition

(1) As the proportion of labeled training data increases, all approaches gain improvement.
This may be attributed to more labeled training data, enabling all models to learn additional
action information, enhancing their recognition performance.

(2) The proposed method is superior to the compared semisupervised methods when using
semisupervised learning in the experiments. This may benefit from the correlation weights by
adaptive feature correlation and graph convolution to facilitate information exchange among
graph nodes, which can provide global topology structures for action recognition. These
results indicate that videos can be regarded as graph nodes for constructing an undirected
graph. The effectiveness of semisupervised action recognition can be enhanced by consider-
ing the correlations among different videos and modeling positively correlated samples via
feature aggregation.

(3) We average the accuracy of 0.05x N,0.10x N,0.15x N,0.20x N, 0.25 x N, 0.50 x N
cases repeated by 10 times. On the HMDBS51 dataset, compared to the latest techniques
SiamMAST [45] and PointDMIG [46], our GSAC-linear model improves the average accu-
racy by 1-2% in most cases. As the HMDBS5]1 dataset involves movie clips or entertainment
videos with fewer frames and less screen switching, making video samples easier to represent
by aggregated features without nonlinear activation, thus suitable for GSAC-linear to achieve
better results.

On Something-Something V2 dataset, compared to the latest techniques SiamMAST [45]
and PointDMIG [46], our GSAC-nonlinear model obtains the best results in 0.20 x NV, 0.25 x
N,0.50 x N cases, and achieves comparable performance when using less labeled train-
ing data. Because Something-Something V2 videos contain numerous scene changes and
frequent screen switching, significant apparent variations require stronger nonlinear feature
fitting capability. More labeled training data can help our model capture the local neighbor-
hood information between adjacent nodes, especially the global topology from labeled and
unlabeled samples, which is hard to learn in this dataset. Therefore, our GSAC-nonlinear
model performs better than the GSAC-linear model on this dataset.

On UCF101 dataset from the THUMOS Challenge, compared to the latest techniques
SiamMAST [45] and PointDMIG [46] our GSAC-linear model achieves the best results when
the labeled training data is 0.20 x IV, 0.25 x N and 0.50 x N, but slightly underperforms other
models in other scenarios. This may account for the simple changes in dataset variation which
consists of sports videos with fixed camera positions, and the characteristics of many sports
activities are relatively monotonous, thus leading to linear transformations for optimal graph
structures without nonlinear activation. Note that the computation speed of GSAC-linear only
takes 10.83 seconds to converge, as shown in Table 5. Nevertheless, GSAC-nonlinear model
design constraints make it difficult to fit simple data distribution, then some recognition cases
seem slightly inferior to other models but still competitive.
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Fig. 3: Sensitivity analysis of the parameter v on three datasets.

Hence, compared to the latest techniques like SiamMAST [45] and PointDMIG [46], our
method demonstrates clear advantages. While SiamMAST effectively integrates multiple fea-
tures, its fixed RGB frame averaging approach may limit generalization. PointDMIG retains
spatial structure information and models long-term spatiotemporal correlations through
complex spatiotemporal encoding, but this leads to spatial information loss and excess com-
putation. Our GSAC model addresses these shortcomings with adaptive feature correlation
and linear transformations. The GSAC-linear model excels in action videos classification
with simple background due to simple unstructured data, while the GSAC-nonlinear model
performs better in complex scenarios. GSAC leverages local neighborhood relationships and
global topology structures between video nodes, adapting to nearest-neighbor relationships
between graph nodes. Therefore, our method surpasses existing global topology modeling
and feature extraction techniques, achieving better performance and generalization.

* Computation Speed

Before removing the nonlinear activation functions, each layer calculates complex node
relationships and updates features. This results in a computational complexity of O(n?) due
to the multiplication of feature dimensions and adjacency matrices. Nonlinear activation func-
tions typically add to this complexity by performing additional nonlinear operations on each
node’s features. After removing the nonlinear functions, the model’s computations involve
only matrix multiplications, reducing the time complexity to O(n?).

We also set a practical experiment to evaluate the computation speed of related GCN-
based methods in Table 5. The comparison results of the model are presented, with or without
nonlinear activation function. The best results are highlighted separately in bold. We consider
the case of 0.50 x N labeled samples for HMDBS51, UCF101, and Something-Something V2,
then compute the average run time over the standard splits. Our GSAC-linear achieves the
fastest speed because of single-layer graph convolution. Compared with GCN, SGC, GAT,
and GSAC-nonlinear, the run time of GSAC-linear gains 4.06x,2.09x, 3.31x, 24.34 x faster
on HMDB51, 3.12x, 1.42x, 2.32x%, 36.9x faster on UCF101, and 3.14x, 1.30x%, 2.39x,
35.51x faster on Something-Something V2, respectively, while our GSAC-linear method
achieves the best recognition performance on both HMDBS51 and UCF101.

14



ffffffffffff o i st

average accuracy
average accuracy
average accuracy

o1 0.20 X N labeled training data o1 0.20 X N labeled training data o1 0.20 x N labeled training data
—:- 050 x N labeled training data —-- 0.50 x N labeled training data —:- 050 x N labeled training data

01 oz o3 05 000s o001 00s 01 o0z 03 05 000s 001 005 01

(a) HMDBS51 (b) UCF101 (c) Something-Something V2

Fig. 4: Sensitivity analysis of the parameter 3 on three datasets.

* Parameter Sensitivity Study

Two hyperparameters, i.e., regularization parameter -y and balance parameter 3 are mainly
discussed. To explore how they affect the analysis performance and iteration process in action
recognition, we conduct parameter sensitivity experiments.

For the parameter v in equation (9), it serves to control the connection probability. Specifi-
cally, it affects similarity measurement as well as the connection probability between samples.
When calculating the connection probability between samples, the parameter v can regulate
the connection strength between samples by adjusting the regularization term, thus affecting
the final clustering result. The optimal value of v will be determined adaptively according to
the number of neighbors needed. In this paper, v is used to regulate the correlation between
nodes to prevent simply assigning the nearest node of the center node with a correlation
weight of 1 and the other nodes with a correlation weight of 0. Using 0.20 X Nand0.50 x N
labeled training data, we set -y in the range of 1073 to 103. Fig.3 shows that different - values
correspond to slight changes in the iterative process, which indicates that GSAC is robust to
the  parameter’s variation.

For the parameter 3 in equation (21), a larger 5 implies that a larger proportion of adaptive
correlations are considered and vice versa. When [ = 0, adaptive correlations are not included,
we show the results of S-parameter sensitivity in Fig.4. It can be observed that, in the case
of 0.20 x Nand0.50 x NN labeled training data, as 3 varies from 0.005 to 0.5, the accuracy
correspondingly increases, reaching its peak at S = 0.2. This implies that the model makes
good use of unlabeled samples for training, and better adapts to the characteristics of data
distribution. A reasonable value of /3 facilitates the mining of correlations among multiple
nodes, further improving the performance of our proposed semi-supervised approach.

When all hyperparameters are chosen within a certain range, e.g., v ranges from {1073 ~
103} and 3 ranges from {0.005 ~ 0.5}, a stable and high accuracy can be obtained. In other
words, there is flexibility in choosing parameter values in order to get the best performance.

* Convergence Study

Finally, we conduct experiments on three datasets and obtain corresponding convergence
curves to investigate the proposed technique. The number of labeled training samples is set
to 0.50 x N for each dataset, whereas the remaining samples (i.e., 0.50 x V) are considered
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Fig. 5: Convergence curves of loss values in (21) when using our algorithm on three datasets.

as unlabeled training data. The results in Fig.5 demonstrate that the loss function value con-
verges after several epochs. We notice that GSAC-nonlinear requires more epochs to achieve
convergence since a nonlinear activation function such as ReL.U is involved in global topol-
ogy optimization, especially the video data distribution of Something-Something V2 is more
complex than other datasets.

4 Conclusions

Semisupervised action recognition can reduce the high cost of manual annotation. In this
study, we consider each video as a node in an undirected graph, explore the feature correlation
among different videos, and present a semisupervised learning framework based on adap-
tive correlation learning and global topology optimization. The adaptive correlation learning
module uses local neighborhood information to assign different weights to adjacent nodes
with feature aggregation. Graph convolution is employed to provide more representative fea-
tures for each node, and the aggregated high-level features are fed into the subsequent layers
for video action recognition. According to the experimental results, the significant efficiency
advantage of our model makes it an ideal choice for handling large-scale data and practi-
cal applications. However, the proposed method may be slightly inferior to some models on
certain datasets.

In future work, we will continue to specifically optimize the model to enhance its general-
ization performance while maintaining its high efficiency. We will also consider the dynamic
neighborhood structure, which we expect to be able to learn the best neighborhood struc-
ture given that the neighbors of each central node may change during model training, thereby
leading to better performance.
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